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• What does computation mean in quantum circuits 

– Quantum parallelism – is it real?

• Deutsch’s problem

– Deutsch’s circuit (algorithm)

– Analysis of the Deutsch circuit 
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Agenda



• Simply stated, in a computational process, we want a quantum computer to take a number 𝑥 and produce 

another number 𝑓(𝑥) by way of some function 𝑓; we will  think of 𝑓 as applying a unitary 

transformation, 𝑈𝑓. Furthermore, 𝑈𝑓 is reversible (in that it is its own inverse).

• We assume there is  an input register with 𝑛 qubits and  an output register with  𝑚 qubits in the 

computer.

• The action of  the operator 𝑈𝑓 on the  computational basis states ۧ|𝑥 𝑛 ۧ|𝑦 𝑚 of the input and output 

registers will be defined by

𝑈𝑓 | ۧ𝑥 𝑛 ۧ|𝑦 𝑚 = ۧ|𝑥 𝑛 ۧ|𝑦 ⊕ 𝑓(𝑥) 𝑚 Eqn. (11.1).

• The symbol ⊕ is addition modulo-2 and is  equivalent to the exclusive OR operation we have already 

discussed. To illustrate its application, suppose in (11.1) that output register is 𝑦 = 0, then (11.1) reduces 

to 

𝑈𝑓 | ۧ𝑥 𝑛 ۧ|0 𝑚 = ۧ|𝑥 𝑛 ۧ|𝑓(𝑥) 𝑚 Eqn. (11.2).
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Quantum Computational Process



• To demonstrate the invertibility of 𝑈𝑓, we  operate with it in (11.1) twice as follows

𝑈𝑓𝑈𝑓 ۧ|𝑥 ۧ|𝑦 = 𝑈𝑓 ۧ|𝑥 ۧ|𝑦 ⊕ 𝑓(𝑥) = ۧ|𝑥 ۧ|𝑦 ⊕ 𝑓(𝑥)⊕ 𝑓(𝑥) = ۧ|𝑥 ۧ|𝑦 Eqn. (11.3).

• Note that 𝑓 𝑥 ⊕ 𝑓 𝑥 = 0 by definition of the exclusive OR operator we discussed in Lecture 10 (see 

the truth table for the exclusive OR operator in that Lecture).

• The Hadamard is one of the most important operators in quantum computing; it can be applied to 2-qubit 

and n-qubit states as follows

𝐻⊗𝐻 ۧ|0 ۧ⊗ |0 = 𝐻 ۧ|0 𝐻 ۧ|0 =
1

2
ۧ|0 + ۧ|1

1

2
ۧ|0 + ۧ|1 =

1

2
ۧ|00 + ۧ|01 + ۧ|10 + ۧ|11 Eqn. (11.4).

• For an  n-qubit state (11.4) generalizes to 

𝐻⊗𝑛| ۧ0 𝑛 =
1

2 Τ𝑛 2
σ0≤𝑥<2𝑛 ۧ|𝑥 𝑛 Eqn. (11.5).
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Quantum Computational Process



• From (11.4) and (11.5) we see that the Hadamard produces a superposition of the 2- or  n-qubit input and 

output registers.  If  we then apply the unitary operator 𝑈𝑓, we see that the final state contains  many 

evaluations of the function 𝑓 at  once.  This is called quantum parallelism; it  doesn’t mean we have access 

to all the  results of the evaluation.  Measurement by the Born rules allows us to have only the values that 

collapse to the measurement basis. 

• Application of 𝑈𝑓 after 𝐻 proceeds as follows

𝑈𝑓 𝐻⊗𝑛 ⊗1𝑚 ۧ|0 𝑛 ۧ|0 𝑚 =
1

2 Τ𝑛 2
σ0≤𝑥<2𝑛𝑈𝑓 ۧ|𝑥 𝑛| ۧ0 𝑚 Eqn. (11.6).

• If we apply 20 Hadamard gates to the input before application of the operator 𝑈𝑓, then in theory the output 

will contain 220 or over a million evaluations of the function 𝑓. These evaluation characterize the  state of 

the  output of the computation and only measurement will result the result and this causes a collapse into 

the measurement  basis.
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Quantum Parallelism



• This problem is about an unknown  function 𝑓 whose inputs are defined in {0,1} and  outputs in {0,1}. 

The question of interest is whether 𝑓 is balanced or constant.   Balanced means 𝑓(0) ≠ 𝑓(1) and constant 

means 𝑓 0 = 𝑓(1).

• The classical way to answer the question is to evaluate 𝑓 for the inputs 0 and 1 and then check to see if  

𝑓 0 = 𝑓 1 . At the minimum, one requires at least 2 evaluations: one for 𝑓(0) and another for 𝑓(1) to 

be able to give an answer.  Deutsch wanted to know whether a quantum approach to the computation 

could answer the question more efficiently (fewer steps). In another words, with just fewer queries than 

the classical approach.

• This is an optimization problem, where the “cost function” is the number of queries to the operator 𝑈𝑓.

• Stating it this way if often known as the quantum query complexity  model.  This model one is given a box 

𝑈𝑓 and the interest is in how many times one has to query the box to get the answer one wants.
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Deutsch’s Problem
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• We want an oracle 𝑈𝑓 that can be 

questioned to determine if function  
𝑓 is constant or  balanced.  The 
truth table for the function is 
shown alongside the box 
representation of the oracle.  

• The oracle performs the  general 
computation given by the 
expression below.
𝑈𝑓 ۧ|𝑝 ۧ|𝑞 = ۧ|𝑝 ۧ|𝑞 ⊕ 𝑓(𝑝)

Definition of the Deutsch Problem
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• There are four distinct possible values that the function can 
be. 

• If the  input is | ۧ0 ⊗ ۧ|0 the output is 𝑓0 = ۧ|0 ۧ|𝑓(0) ;

• If the  input is ۧ|0 ⊗ ۧ|1 the output is 𝑓1 = ۧ|0 ۧ|1 ⊕ 𝑓(0) ;

• If the  input is ۧ|1 ⊗ ۧ|0 the output is ۧ𝑓2 = |1 ۧ|𝑓(1) ;

• If the  input is ۧ|1 ⊗ ۧ|1 the output is ۧ𝑓3 = |1 ۧ|1 ⊕ 𝑓(1) ;

• Different gates as illustrate could achieve the output results.  
But we want a single circuit.  As we will see Deutsch 
achieved this goal by using  the Hadamard gate several 
times in his circuit.

Possible Gate Circuit Implementations  



• A quantum mechanical way to approach the problem is to recall (11.1). However instead of 𝑓 having  just  

one qubit in  the  input  register, we provide  the input  in superposition of the possible inputs {0,1}; We 

replace ۧ|𝑥 in (11.1) with 𝛼 ۧ|0 + 𝛽 ۧ|1 and  assume the output ۧ|𝑦 is ۧ|0 .  When we  operate with 𝑈𝑓, we 

expect the output to contain 𝑓(0) and 𝑓(1).  Thus

ۧ|𝜓 𝑜𝑢𝑡 = 𝑈𝑓 𝛼 ۧ|0 + 𝛽 ۧ|1 ⊗ ۧ|0 = α𝑈𝑓 ۧ|00 +𝛽𝑈𝑓 ۧ|10 = α ۧ|0 ۧ|𝑓(0) + β ۧ|1 ۧ|𝑓(1) Eqn. (11.7).

• Note that we have used the fact that because 𝑈𝑓 ۧ|00 = ۧ|0 ۧ|0 ⊕ 𝑓(0) we can write  0⊕ 𝑓 0 = 𝑓(0), 

and for   𝑈𝑓 ۧ|10 = ۧ|1 ۧ|0 ⊕ 𝑓(1) we can use 0⊕ 𝑓 1 = 𝑓(1) to arrive at the last  part of (11.7). 

• Measurement in the ۧ|0 or ۧ|1 basis collapses the state into that one these basis and we still won’t have 

an answer to the original problem of whether  𝑓 is constant or balanced.
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First  Trial Solution to Deutsch’s Problem



• The circuit  that implements Deutsch’s algorithm is shown above. We explain how it works in the 

following slides.
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Circuit Deutsch’s Algorithm 



• The state at the input of the circuit is  given by

| ۧ𝜓1 = ۧ|01 Eqn. (11.7).

• After  the Hadamard, the  state of the system is given as 

| ۧ𝜓2 = ۧ| + ۧ| − =
1

2
ۧ|00 − ۧ|01 + ۧ|10 − ۧ|11 Eqn. (11.8).

• After applying the 𝑈𝑓 operator the function is given by 

| ۧ𝜓3 = 𝑈𝑓 ۧ|𝜓2 =
1

2
ൿۧ|0 |𝑓(0) − ۧ|0 ۧ|1 ⊕ 𝑓(0) + ۧ|1 ۧ|𝑓 1 + ۧ|1 ۧ|1 ⊕ 𝑓(1) Eqn. (11.9).

• If the function  𝑓 is constant , then we have 𝑓 0 = 𝑓(1), which allows us to simplify (11.9)  to

•

ۧ|𝜓3 =
1

2
ൿۧ|0 |𝑓(0) − ۧ|0 ۧ|1 ⊕ 𝑓(0) + ۧ|1 ۧ|𝑓 0 + ۧ|1 ۧ|1 ⊕ 𝑓(0)

=
1

2
ۧ|0 + ۧ|1 ⊗ ۧ|𝑓(0) − ۧ|0 + ۧ|1 ⊗ ۧ|1 ⊕ 𝑓(0)

=
1

2
ۧ|0 + ۧ|1 ⊗ ۧ| ۧ𝑓(0) − |1⊕ 𝑓(0)

=
1

2
ۧ| + ⊗ | ۧ𝑓(0) − ۧ|1 ⊕ 𝑓(0)

Eqn. (11.10).
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Analysis of the Deutsch  Circuit 



• From (11.10), we see  that  the first   qubit has  been transformed to the  state ۧ| + .

• After the Hadamard, then the system state will be

| ۧ𝜓4 =
1

2
ۧ|0 ⊗ ۧ𝑓(0) − ۧ|1 ⊕ 𝑓(0) Eqn. (11.11)

• If we now  measure the first qubit of (11.11), for sure the state will collapse to 0.

• If the function 𝑓 is balanced, then 𝑓(0) ≠ 𝑓(1) and 𝑓 0 ⊕ 1 = 𝑓(1) and 𝑓 1 ⊕ 1 = f(0), then (11.9) 

can be simplified to 

•

ۧ|𝜓3 =
1

2
ൿۧ|0 |𝑓(0) − ۧ|0 ۧ|𝑓(1) + ۧ|1 ۧ|𝑓(1) − ۧ|1 ۧ|𝑓(0)

=
1

2
ۧ|0 − ۧ|1 ⊗ ۧ𝑓(0 − ۧ|0 − ۧ|1 ⊗ ۧ|𝑓(1)

=
1

2
ۧ|0 − ۧ|1 ⊗ ۧ|𝑓(0) − ۧ|𝑓(1)

=
1

2
ۧ| − ⊗ ൿ|𝑓 0 − ۧ|𝑓1)

Eqn. (11.12)
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Analysis of the Deutsch Circuit



• From (11.12), we see  that  the first   qubit has  been transformed to the  state ۧ| − .

• After passing through the Hadamard, it is clear that 

ۧ|𝜓4 =
1

2
ۧ|1 ⊗ | ۧ𝑓(0) − ۧ|1 ⊕ 𝑓(0) Eqn. (11.11)  Eqn.(11.13)

• We now see that the first  qubit has been transformed to 1.  When that  is followed by measurement in the 

standard basis, we are assured that we will get 1.

• From (11.1) and (11.13) after measurement with a standard basis the circuit outputs, respectively, a 0  

when 𝑓 is constant and a 1 when 𝑓 is balanced.

• The crucial point that Deutsch realized is that his algorithm can decide with just one query whether 𝑓 is 

constant or balanced.
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Analysis of the Deutsch Circuit



• The state vector ۧ| + and ۧ| − differ by a 180𝑜 phase (as indicated  by the minus sign).

• We  investigate the action of the 𝑈𝑓 on an input state that  has ۧ| − as a component, for example,

•

ൿ𝑈𝑓 ۧ|𝑥 | − =
1

2
𝑈𝑓 ۧ|𝑥 ۧ|0 − 𝑈𝑓 ۧ|𝑥 ۧ|1

=
1

2
ۧ|𝑥 ۧ|𝑓(𝑥) − ۧ|𝑥 ۧ|1 ⊕ 𝑓(𝑥)

=
1

2
ۧ|𝑥 ⊗ ۧ|𝑓(𝑥) − ۧ|1 ⊕ 𝑓(𝑥)

Eqn. (11.14).

• It  is possible that  𝑓 𝑥 = 0 or 𝑓 𝑥 = 1;  if 𝑓 𝑥 = 0 then the last result in (11.14) becomes

𝑈𝑓 ۧ|𝑥 ۧ| − = ۧ|𝑥 ⊗
1

2
ۧ|0 − ۧ|1 = ۧ|𝑥 ۧ| − Eqn. (11.15)

• And if 𝑓 𝑥 = 1 then the last result in (11.14) becomes

𝑈𝑓 ۧ|𝑥 ۧ| − = ۧ|𝑥 ⊗
1

2
ۧ|1 − ۧ|0 = ۧ−|𝑥 ۧ| − Eqn. (11.16).

• We can combine (11.15) and (11.16) and write 𝑈𝑓 ۧ|𝑥 ۧ| − = ൿ−1 𝑓(𝑥)|𝑥 ۧ| − Eqn. (11.17).
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Utilizing a Phase Insight to Simplify Analysis 



• The state vector of the  circuit after the Hadamard can be re-written as

| ۧ𝜓2 = ۧ| + ۧ| − =
1

2
ۧ|0 ۧ| − + ۧ|1 ۧ| − , Eqn. (11.18), where  have not expanded ۧ| − .

• With the phase insight, the state vector, ۧ|𝜓3 , after application of 𝑈𝑓 becomes (using (11.17)

| ۧ𝜓3 =
1

2
−1 𝑓(0) ۧ|0 ۧ| − + −1 𝑓(1) ۧ|1 ۧ| − Eqn. (11.19)

• For 𝑓 constant 𝑓 0 = 𝑓(1) and we can factor  out −1 𝑓(0) and rewrite (11.19)  as

| ۧ𝜓3 = −1 𝑓(0) 1

2
ۧ|0 ۧ| − + ۧ|1 ۧ| − = −1 𝑓(0) ۧ| + ۧ| − Eqn.. (11.20)

• When we apply the  Hadamard the state vector ۧ𝜓4 becomes

ۧ|𝜓4 = −1 𝑓(0) ۧ|0 ۧ| − Eqn. (11.21).

• Measuring in the standard basis then yields 0 for the first qubit as before.

• Finally, when 𝑓 is balanced and 𝑓(0) ≠ 𝑓(1) and we cannot factor out the −1;  we must now write ۧ|𝜓3

as

| ۧ𝜓3 = ±
1

2
ۧ|0 ۧ| − − ۧ|1 ۧ| − = ± ۧ| − ۧ| − Eqn. (11.22).
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Re-examining the Deutsch Circuit with Phase Insight



• Application of the last Hadamard to (11.22) gives us the expression for ۧ|𝜓4 as

ۧ|𝜓4 = ± ۧ|1 ۧ| − Eqn. (11.23).

• Measurement in the standard basis gives us the first qubit as 1 with an uncertainty.   This is the same result 

we obtained earlier.

• Deutsch’s  problem was posed to determine if  quantum computers could do some things more  efficiently 

than  classical computers.

• The question then was to find what is meant more efficiently. Time of execution  is relevant parameter but 

not  the only one.

• What  Deutsch set out to  prove was the  query complexity  aspect of computing. In this case the quantum 

process performed better and  in  some this advantage  could translate into a ”faster” execution time.
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Re-examining the Deutsch Circuit with Phase Insight



• Quantum Computation 

– What does quantum parallelism mean

• Discussed Deutsch’s problem and his circuit 

– Introduced the phase insight for  simplifying quantum computational equations 

• Discussed some helpful things about the Hadamard operator
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Summary


